
RC25482 (AUS1407-001) July 21, 2014
Computer Science

IBM Research Report

An Updated Performance Comparison of Virtual Machines
and Linux Containers

Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

USA

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

An Updated Performance Comparison of
Virtual Machines and Linux Containers

Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio
IBM Research, Austin, TX

{wmf, apferrei, rajamony, rubioj}@us.ibm.com

Abstract—Cloud computing makes extensive use of virtual
machines (VMs) because they permit workloads to be isolated
from one another and for the resource usage to be somewhat
controlled. However, the extra levels of abstraction involved in
virtualization reduce workload performance, which is passed
on to customers as worse price/performance. Newer advances
in container-based virtualization simplifies the deployment of
applications while continuing to permit control of the resources
allocated to different applications.

In this paper, we explore the performance of traditional
virtual machine deployments, and contrast them with the use of
Linux containers. We use a suite of workloads that stress CPU,
memory, storage, and networking resources. We use KVM as a
representative hypervisor and Docker as a container manager.
Our results show that containers result in equal or better
performance than VMs in almost all cases. Both VMs and
containers require tuning to support I/O-intensive applications.
We also discuss the implications of our performance results for
future cloud architectures.

I. INTRODUCTION

Virtual machines are used extensively in cloud computing.
In particular, the state-of-the-art in Infrastructure as a Service
(IaaS) is largely synonymous with virtual machines. Cloud
platforms like Amazon EC2 make VMs available to customers
and also run services like databases inside VMs. Many Plat-
form as a Servive (PaaS) and Software as a Service (SaaS)
providers are built on IaaS with all their workloads running
inside VMs. Since virtually all cloud workloads are currently
running in VMs, VM performance is a crucial component
of overall cloud performance. Once a hypervisor has added
overhead, no higher layer can remove it. Such overheads then
become a pervasive tax on cloud workload performance. There
have been many studies showing how VM execution compares
to native execution [30, 33] and such studies have been a
motivating factor in generally improving the quality of VM
technology [25, 31].

Container-based virtualization presents an interesting al-
ternative to virtual machines in the cloud [46]. Virtual Private
Server providers, which may be viewed as a precursor to cloud
computing, have used containers for over a decade but many
of them switched to VMs to provide more consistent perfor-
mance. Although the concepts underlying containers such as
namespaces are well understood [34], container technology
languished until the desire for rapid deployment led PaaS
providers to adopt and standardize it, leading to a renaissance
in the use of containers to provide isolation and resource con-
trol. Linux is the preferred operating system for the cloud due
to its zero price, large ecosystem, good hardware support, good
performance, and reliability. The kernel namespaces feature
needed to implement containers in Linux has only become
mature in the last few years since it was first discussed [17].

Within the last two years, Docker [45] has emerged as a
standard runtime, image format, and build system for Linux
containers.

This paper looks at two different ways of achieving re-
source control today, viz., containers and virtual machines
and compares the performance of a set of workloads in both
environments to that of natively executing the workload on
hardware. In addition to a set of benchmarks that stress
different aspects such as compute, memory bandwidth, mem-
ory latency, network bandwidth, and I/O bandwidth, we also
explore the performance of two real applications, viz., Redis
and MySQL on the different environments.

Our goal is to isolate and understand the overhead intro-
duced by virtual machines (specifically KVM) and containers
(specifically Docker) relative to non-virtualized Linux. We
expect other hypervisors such as Xen, VMware ESX, and
Microsoft Hyper-V to provide similar performance to KVM
given that they use the same hardware acceleration features.
Likewise, other container tools should have equal performance
to Docker when they use the same mechanisms. We do not
evaluate the case of containers running inside VMs or VMs
running inside containers because we consider such double
virtualization to be redundant (at least from a performance
perspective). The fact that Linux can host both VMs and
containers creates the opportunity for an apples-to-apples com-
parison between the two technologies with fewer confounding
variables than many previous comparisons.

We make the following contributions:

• We provide an up-to-date comparison of native, con-
tainer, and virtual machine environments using recent
hardware and software across a cross-section of inter-
esting benchmarks and workloads that are relevant to
the cloud.

• We identify the primary performance impact of current
virtualization options for HPC and server workloads.

• We elaborate on a number of non-obvious practical
issues that affect virtualization performance.

• We show that containers are viable even at the scale
of an entire server with minimal performance impact.

The rest of the paper is organized as follows. Section II de-
scribes Docker and KVM, providing necessary background to
understanding the remainder of the paper. Section III describes
and evaluates different workloads on the three environments.
We review related work in Section IV, and finally, Section V
concludes the paper.

II. BACKGROUND

A. Motivation and requirements for cloud virtualization

Unix traditionally does not strongly implement the prin-
ciple of least privilege, viz., “Every program and every user
of the system should operate using the least set of privileges
necessary to complete the job.” and the least common mech-
anism principle, viz., “Every shared mechanism ... represents
a potential information path between users and must be de-
signed with great care to be sure it does not unintentionally
compromise security.” [42]. Most objects in Unix, including
the filesystem, processes, and the network stack are globally
visible to all users.

A problem caused by Unix’s shared global filesystem is
the lack of configuration isolation. Multiple applications can
have conflicting requirements for system-wide configuration
settings. Shared library dependencies can be especially prob-
lematic since modern applications use many libraries and often
different applications require different versions of the same
library. When installing multiple applications on one operating
system the cost of system administration can exceed the cost
of the software itself.

These weaknesses in common server operating systems
have led administrators and developers to simplify deployment
by installing each application on a separate OS copy, either on
a dedicated server or in a virtual machine. Such isolation re-
verses the status quo compared to a shared server with explicit
action required for sharing any code, data, or configuration
between applications.

Irrespective of the environment, customers want to get the
performance they are paying for. Unlike enterprise consolida-
tion scenarios where the infrastructure and workload are owned
by the same company, in IaaS and PaaS there is an arms-
length relationship between the provider and the customer. This
makes it difficult to resolve performance anomalies, so *aaS
providers usually provision fixed units of capacity (CPU cores
and RAM) with no oversubscription. A virtualization system
needs to enforce such resource isolation to be suitable for
cloud infrastructure use.

B. KVM

Kernel Virtual Machine (KVM) [25] is a feature of Linux
that allows Linux to act as a type 1 hypervisor [36], running
an unmodified guest operating system (OS) inside a Linux
process. KVM uses hardware virtualization features in recent
processors to reduce complexity and overhead; for example,
Intel VT-x hardware eliminates the need for complex ring
compression schemes that were pioneered by earlier hyper-
visors like Xen [9] and VMware [8]. KVM supports both
emulated I/O devices through QEMU [16] and paravirtual
I/O devices using virtio [40]. The combination of hardware
acceleration and paravirtual I/O is designed to reduce virtual-
ization overhead to very low levels [31]. KVM supports live
migration, allowing physical servers or even whole data centers
to be evacuated for maintenance without disrupting the guest
OS [14]. KVM is also easy to use via management tools such
as libvirt [18].

Because a VM has a static number of virtual CPUs
(vCPUs) and a fixed amount of RAM, its resource consumption
is naturally bounded. A vCPU cannot use more than one real
CPU worth of cycles and each page of vRAM maps to at
most one page of physical RAM (plus the nested page table).

KVM can resize VMs while running by “hotplugging” and
“ballooning” vCPUs and vRAM, although this requires support
from the guest operating system and is rarely used in the cloud.

Because each VM is a process, all normal Linux resource
management facilities such as scheduling and cgroups (de-
scribed in more detail later) apply to VMs. This simplifies
implementation and administration of the hypervisor but com-
plicates resource management inside the guest OS. Operating
systems generally assume that CPUs are always running and
memory has relatively fixed access time, but under KVM
vCPUs can be descheduled without notification and virtual
RAM can be swapped out, causing performance anomalies that
can be hard to debug. VMs also have two levels of allocation
and scheduling: one in the hypervisor and one in the guest
OS. Many cloud providers eliminate these problems by not
overcommitting resources, pinning each vCPU to a physical
CPU, and locking all virtual RAM into real RAM. (Unfortu-
nately, OpenStack has not yet enabled vCPU pinning, leading
to uneven performance compared to proprietary public clouds.)
This essentially eliminates scheduling in the hypervisor. Such
fixed resource allocation also simplifies billing.

VMs naturally provide a certain level of isolation and
security because of their narrow interface; the only way a VM
can communicate with the outside world is through a limited
number of hypercalls or emulated devices, both of which are
controlled by the hypervisor. This is not a panacea, since a
few hypervisor privilege escalation vulnerabilities have been
discovered that could allow a guest OS to “break out” of its
VM “sandbox”.

While VMs excel at isolation, they add overhead when
sharing data between guests or between the guest and hy-
pervisor. Usually such sharing requires fairly expensive mar-
shaling and hypercalls. In the cloud, VMs generally access
storage through emulated block devices backed by image files;
creating, updating, and deploying such disk images can be
time-consuming and collections of disk images with mostly-
duplicate contents can waste storage space.

C. Linux containers

Rather than running a full OS on virtual hardware,
container-based virtualization modifies an existing OS to pro-
vide extra isolation. Generally this involves adding a container
ID to every process and adding new access control checks to
every system call. Thus containers can be viewed as another
level of access control in addition to the user and group
permission system. In practice, Linux uses a more complex
implementation described below.

Linux containers are a concept built on the kernel names-
paces feature, originally motivated by difficulties in dealing
with high performance computing clusters [17]. This fea-
ture, accessed by the clone() system call, allows creating
separate instances of previously-global namespaces. Linux
implements filesystem, PID, network, user, IPC, and hostname
namespaces. For example, each filesystem namespace has its
own root directory and mount table, similar to chroot() but
more powerful.

Namespaces can be used in many different ways, but the
most common approach is to create an isolated container that
has no visibility or access to objects outside the container.
Processes running inside the container appear to be running
on a normal Linux system although they are sharing the

underlying kernel with processes located in other namespaces.
Containers can nest hierarchically [19], although this capability
has not been much explored.

Unlike a VM which runs a full operating system, a con-
tainer can contain as little as a single process. A container
that behaves like a full OS and runs init, inetd, sshd,
syslogd, cron, etc. is called a system container while one
that only runs an application is called an application con-
tainer. Both types are useful in different circumstances. Since
an application container does not waste RAM on redundant
management processes it generally consumes less RAM than
an equivalent system container or VM. Application containers
generally do not have separate IP addresses, which can be an
advantage in environments of address scarcity.

If total isolation is not desired, it is easy to share some
resources among containers. For example, bind mounts allow
a directory to appear in multiple containers, possibly in dif-
ferent locations. This is implemented efficiently in the Linux
VFS layer. Communication between containers or between a
container and the host (which is really just a parent namespace)
is as efficient as normal Linux IPC.

The Linux control groups (cgroups) subsystem is used to
group processes and manage their aggregate resource con-
sumption. It is commonly used to limit the memory and CPU
consumption of containers. A container can be resized by sim-
ply changing the limits of its corresponding cgroup. Cgroups
also provide a reliable way of terminating all processes inside
a container. Because a containerized Linux system only has
one kernel and the kernel has full visibility into the containers
there is only one level of resource allocation and scheduling.

An unsolved aspect of container resource management is
the fact that processes running inside a container are not aware
of their resource limits [27]. For example, a process can see all
the CPUs in the system even if it is only allowed to run on a
subset of them; the same applies to memory. If an application
attempts to automatically tune itself by allocating resources
based on the total system resources available it may over-
allocate when running in a resource-constrained container. As
containers mature, this limitation is likely to be addressed.

Securing containers tends to be simpler than managing
Unix permissions because the container cannot access what
it cannot see and thus the potential for accidentally over-broad
permissions is greatly reduced. When using user namespaces,
the root user inside the container is not treated as root outside
the container, adding additional security. The primary type of
security vulnerability in containers is system calls that are not
namespace-aware and thus can introduce accidental leakage
between containers. Because the Linux system call API set is
huge, the process of auditing every system call for namespace-
related bugs is still ongoing. Such bugs can be mitigated (at the
cost of potential application incompatibility) by whitelisting
system calls using seccomp [5].

Several management tools are available for Linux contain-
ers, including LXC [48], systemd-nspawn [35], lmctfy [49],
Warden [2], and Docker [45]. (Some people refer to Linux
containers as “LXC”, but this causes confusion because LXC
is only one of many tools to manage containers). Due to its
feature set and ease of use, Docker has rapidly become the
standard management tool and image format for containers.
A key feature of Docker not present in most other container
tools is layered filesystem images, usually powered by AUFS
(Another UnionFS) [12]. AUFS provides a layered stack of

filesystems and allows reuse of these layers between containers
reducing space usage and simplifying filesystem management.
A single OS image can be used as a basis for many containers
while allowing each container to have its own overlay of
modified files (e.g., app binaries and configuration files). In
many cases, Docker container images require less disk space
and I/O than equivalent VM disk images. This leads to faster
deployment in the cloud since images usually have to be copied
over the network to local disk before the VM or container can
start.

Although this paper focuses on steady-state performance,
other measurements [39] have shown than containers can start
much faster than VMs (less than 1 second compared to 11
seconds on our hardware) because unlike VMs, containers do
not need to boot another copy of the operating system. In
theory CRIU [1] can perform live migration of containers, but
it may be faster to kill a container and start a new one.

III. EVALUATION

Performance has numerous aspects. We focus on the issue
of overhead compared to native, non-virtualized execution
because it reduces the resources available for productive work.
Thus we investigate scenarios where one or more hardware
resources are fully utilized and we measure workload metrics
like throughput and latency to determine the overhead of
virtualization.

All of our tests were performed on an IBM System x3650
M4 server with two 2.4-3.0 GHz Intel Sandy Bridge-EP Xeon
E5-2665 processors for a total of 16 cores (plus HyperThread-
ing) and 256 GB of RAM. The two processors/sockets are
connected by QPI links making this a non-uniform memory
access (NUMA) system. This is a mainstream server config-
uration that is very similar to those used by popular cloud
providers. We used Ubuntu 13.10 (Saucy) 64-bit with Linux
kernel 3.11.0, Docker 1.0, QEMU 1.5.0, and libvirt 1.1.1. For
consistency, all Docker containers used an Ubuntu 13.10 base
image and all VMs used the Ubuntu 13.10 cloud image.

Power management was disabled for the tests by using
the performance cpufreq governor. Docker containers were not
restricted by cgroups so they could consume the full resources
of the system under test. Likewise, VMs were configured
with 32 vCPUs and adequate RAM to hold the benchmark’s
working set. In some tests we explore the difference between
stock KVM (similar to a default OpenStack configuration)
and a highly-tuned KVM configuration (similar to public
clouds like EC2). We use microbenchmarks to individually
measure CPU, memory, network, and storage overhead. We
also measure two real server applications: Redis and MySQL.

A. CPU—PXZ

Compression is a frequently used component of cloud
workloads. PXZ [11] is a parallel lossless data compression
utility that uses the LZMA algorithm. We use PXZ 4.999.9beta
(build 20130528) to compress enwik9 [29], a 1 GB Wikipedia
dump that is often used for compression benchmarking. To
focus on compression rather than I/O we use 32 threads,
the input file is cached in RAM, and the output is piped to
/dev/null. We use compression level 2.

Table I shows the throughput of PXZ under different
configurations. As expected, native and Docker performance
are very similar while KVM is 22% slower. We note that

TABLE I. RESULTS FOR PXZ, LINPACK, STREAM, AND RANDOMACCESS. EACH DATA POINT IS THE ARITHMETIC MEAN OF TEN RUNS. DEPARTURE

FROM NATIVE EXECUTION IS SHOW WITHIN PARENTHESES ”()”. THE STANDARD DEVIATION IS SHOWN WITHIN SQUARE BRACKETS ”[]”.

Workload Native Docker KVM-untuned KVM-tuned
PXZ (MB/s) 76.2 [±0.93] 73.5 (-4%) [±0.64] 59.2 (-22%) [±1.88] 62.2 (-18%) [±1.33]

Linpack (GFLOPS) 290.8 [±1.13] 290.9 (-0%) [±0.98] 241.3 (-17%) [±1.18] 284.2 (-2%) [±1.45]
RandomAccess (GUPS) 0.0126 [±0.00029] 0.0124 (-2%) [±0.00044] 0.0125 (-1%) [±0.00032]

Tuned run not warranted
Stream (GB/s)

Add 45.8 [±0.21] 45.6 (-0%) [±0.55] 45.0 (-2%) [±0.19]
Copy 41.3 [±0.06] 41.2 (-0%) [±0.08] 40.1 (-3%) [±0.21]
Scale 41.2 [±0.08] 41.2 (-0%) [±0.06] 40.0 (-3%) [±0.15]
Triad 45.6 [±0.12] 45.6 (-0%) [±0.49] 45.0 (-1%) [±0.20]

tuning KVM by vCPU pinning and exposing cache topology
makes little difference to the performance. While further
experimentation is required to pinpoint the source of KVM
overhead, we suspect it is caused by the extra TLB pressure
of nested paging. PXZ may benefit from using large pages.

B. HPC—Linpack

Linpack solves a dense system of linear equations using
an algorithm that carries out LU factorization with partial
pivoting [21]. The vast majority of compute operations are
spent in double-precision floating point multiplication of a
scalar with a vector and adding the results to another vector.
The benchmark is typically based on a linear algebra library
that is heavily optimized for the specific machine architec-
ture at hand. We use an optimized Linpack binary (version
11.1.2.005)[3] based on the Intel Math Kernel Library (MKL).
The Intel MKL is highly adaptive and optimizes itself based
on both the available floating point resources (e.g., what form
of multimedia operations are available), as well as the cache
topology of the system. By default, KVM does not expose
topology information to VMs, so the guest OS believes it
is running on a uniform 32-socket system with one core per
socket.

Table I shows the performance of Linpack on Linux,
Docker, and KVM. Performance is almost identical on both
Linux and Docker–this is not surprising given how little OS
involvement there is during the execution. However, untuned
KVM performance is markedly worse, showing the costs of
abstracting/hiding hardware details from a workload that can
take advantage of it. By being unable to detect the exact nature
of the system, the execution employs a more general algorithm
with consequent performance penalties. Tuning KVM to pin
vCPUs to their corresponding CPUs and expose the underlying
cache topology increases performance nearly to par with
native.

We expect such behavior to be the norm for other similarly
tuned, adaptive executions, unless the system topology is
faithfully carried forth into the virtualized environment.

C. Memory bandwidth—Stream

The STREAM benchmark is a simple synthetic benchmark
program that measures sustainable memory bandwidth when

TABLE II. STREAM COMPONENTS

Name Kernel Bytes per FLOPS per
iteration iteration

COPY a[i] = b[i] 16 0
SCALE a[i] = q∗b[i] 16 1

ADD a[i] = b[i]+ c[i] 24 1
TRIAD a[i] = b[i]+q∗ c[i] 24 2

performing simple operations on vectors [21]. Performance
is dominated by the memory bandwidth of the system with
the working set engineered to be significantly larger than
the caches. The main determinants of performance are the
bandwidth to main memory, and to a much lesser extent, the
cost of handling TLB misses (which we further reduce using
large pages). The memory access pattern is regular and the
hardware prefetchers typically latch on to the access pattern
and prefetch data before it is needed. Performance is therefore
gated by memory bandwidth and not latency. The benchmark
has four components: COPY, SCALE, ADD and TRIAD that are
described in Table II.

Table I shows the performance of Stream across the three
execution environments. All four components of Stream per-
form regular memory accesses where once a page table entry
is installed in the TLB, all data within the page is accessed
before moving on to the next page. Hardware TLB prefetching
also works very well for this workload. As a consequence,
performance on Linux, Docker, and KVM is almost identical,
with the median data exhibiting a difference of only 1.4%
across the three execution environments.

D. Random Memory Access—RandomAccess

The Stream benchmark stresses the memory subsystem in
a regular manner, permitting hardware prefetchers to bring in
data from memory before it is used in computation. In contrast,
the RandomAccess benchmark [21] is specially designed to
stress random memory performance. The benchmark initializes
a large section of memory as its working set, that is orders
of magnitude larger than the reach of the caches or the
TLB. Random 8-byte words in this memory section are read,
modified (through a simple XOR operation) and written back.
The random locations are generated by using a linear feedback
shift register requiring no memory operations. As a result, there
is no dependency between successive operations permitting
multiple independent operations to be in flight through the
system. RandomAccess typifies the behavior of workloads with
large working sets and minimal computation such as those with
in-memory hash tables and in-memory databases.

As with Stream, RandomAccess uses large pages to reduce
TLB miss overhead. Because of its random memory access
pattern and a working set that is larger than the TLB reach,
RandomAccess significantly exercises the hardware page table
walker that handles TLB misses. As Table I shows, On our
two-socket system, this has the same overheads for both
virtualized and non-virtualized environments.

E. Network bandwidth—nuttcp

We used the nuttcp tool [7] to measure network bandwidth
between the system under test and an identical machine

connected using a direct 10 Gbps Ethernet link between
two Mellanox ConnectX-2 EN NICs. We applied standard
network tuning for 10 Gbps networking such as enabling TCP
window scaling and increasing socket buffer sizes. As shown
in Figure 1, Docker attaches all containers on the host to a
bridge and connects the bridge to the network via NAT. In
our KVM configuration we use virtio and vhost to minimize
virtualization overhead.

TCP/IP

NIC

TCP/IP

bridge

NAT

NIC

TCP/IP

virtio

bridge

NIC

vhost

Native Docker NAT KVM

G
uest

H
ost

veth pair

Fig. 1. Network configurations

We used nuttcp to measure the goodput of a unidirectional
bulk data transfer over a single TCP connection with standard
1500-byte MTU. In the client-to-server case the system under
test (SUT) acts as the transmitter and in the server-to-client
case the SUT acts as the receiver; it is necessary to measure
both directions since TCP has different code paths for send
and receive. All three configurations reach 9.3 Gbps in both
the transmit and receive direction, very close to the theoretical
limit of 9.41 Gbps due to packet headers. Due to segmentation
offload, bulk data transfer is very efficient even given the
extra layers created by different forms of virtualization. The
bottleneck in this test is the NIC, leaving other resources
mostly idle. In such an I/O-bound scenario, we determine
overhead by measuring the amount of CPU cycles required to
transmit and receive data. Figure 2 shows system-wide CPU
utilization for this test, measured using perf stat -a.
Docker’s use of bridging and NAT noticeably increases the
transmit path length; vhost-net is fairly efficient at transmitting
but has high overhead on the receive side. Containers that
do not use NAT have identical performance to native Linux.
In real network-intensive workloads, we expect such CPU
overhead to reduce overall performance.

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

Transmit" Receive"

cy
cl
es
/b
yt
e)

Na5ve"

Docker"NAT"

KVM"

Fig. 2. TCP bulk transfer efficiency (CPU cycles/byte)

Historically, Xen and KVM have struggled to provide
line-rate networking due to circuitous I/O paths that sent

every packet through userspace. This has led to considerable
research on complex network acceleration technologies like
polling drivers or hypervisor bypass. Our results show that
vhost, which allows the VM to communicate directly with
the host kernel, solves the network throughput problem in a
straightforward way. With more NICs, we expect this server
could drive over 40 Gbps of network traffic without using any
exotic techniques.

F. Network latency—netperf

We used the netperf request-response benchmark to mea-
sure round-trip network latency using similar configurations as
the nuttcp tests in the previous section. In this case the system
under test was running the netperf server (netserver) and the
other machine ran the netperf client. The client sends a 100-
byte request, the server sends a 200-byte response, and the
client waits for the response before sending another request.
Thus only one transaction is in flight at a time.

0"

10"

20"

30"

40"

50"

60"

70"

80"

TCP_RR" UDP_RR"

Ro
un

d&
tr
ip
&la
te
nc
y&
(µ
s)
&

Na4ve"

Docker"NAT"

KVM"

Fig. 3. Network round-trip latency (µs).

Figure 3 shows the measured transaction latency for both
TCP and UDP variants of the benchmark. NAT, as used in
Docker, doubles latency in this test. KVM adds 30µs of
overhead to each transaction compared to the non-virtualized
network stack, an increase of 80%. TCP and UDP have very
similar latency because in both cases a transaction consists of
a single packet in each direction. Unlike as in the throughput
test, virtualization overhead cannot be amortized in this case.

G. Block I/O—fio

SAN-like block storage is commonly used in the cloud
to provide high performance and strong consistency. To test
the overhead of virtualizing block storage, we attached a
20 TB IBM FlashSystem 840 flash SSD to our test server
using two 8 Gbps Fibre Channel links to a QLogic ISP2532-
based dual-port HBA with dm_multipath used to combine
the two links. We created an ext4 filesystem on it using
default settings. In the native case the filesystem was mounted
normally while in the Docker test it was mapped into the
container using the -v option (avoiding AUFS overhead). In
the VM case the block device was mapped into the VM using
virtio and mounted inside the VM. These configurations
are depicted in Figure 4. We used fio [13] 2.0.8 with the
libaio backend in O DIRECT mode to run several tests
against a 16 GB file stored on the SSD. USing O DIRECT
allows accesses to bypass the OS caches.

Native/Docker

virtio

dm_multipath

HBA HBA

SSD

ext4

KVM

QEMU

G
uest

H
ost

ext4

dm_multipath

HBA HBA

SSD

Fig. 4. Storage configurations used for fio

0"

100"

200"

300"

400"

500"

600"

700"

800"

900"

Sequen1al"Read" Sequen1al"Write"

Th
ro
ug
hp

ut
)(M

B/
s)
) Na1ve"

Docker"

KVM"

Fig. 5. Sequential I/O throughput (MB/s).

Figure 5 shows sequential read and write performance av-
eraged over 60 seconds using a typical 1 MB I/O size. Docker
and KVM introduce negligible overhead in this case, although
KVM has roughly four times the performance variance as the
other cases. Similar to the network, the Fibre Channel HBA
appears to be the bottleneck in this test.

Figure 6 shows the performance of random read, write
and mixed (70% read, 30% write) workloads using a 4 kB
block size and concurrency of 128, which we experimentally
determined provides maximum performance for this particular
SSD. As we would expect, Docker introduces no overhead

0"

20000"

40000"

60000"

80000"

100000"

120000"

Random"
Read"

Random"
Write"

Random"
Mixed"

IO
PS
%

Na6ve"

Docker"

KVM"

Fig. 6. Random I/O throughput (IOPS).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000

C
D

F
(%

)

Latency (us)

Native
Docker

KVM

Fig. 7. Random read latency CDF, concurrency 16 (µs). The Native and
Docker lines are almost superimposed atop one another.

compared to Linux, but KVM delivers only half as many IOPS
because each I/O operation must go through QEMU. While the
VM’s absolute performance is still quite high, it uses more
CPU cycles per I/O operation, leaving less CPU available for
application work. Figure 7 shows that KVM increases read
latency by 2-3x, a crucial metric for some real workloads.

We also note that this hardware configuration ought to be
able to exceed 1.5 GB/s in sequential I/O and 350,000 IOPS in
random I/O, so even the native case has significant unrealized
potential that we did not manage to exploit while the hardware
was on loan to us.

H. Redis

Memory-based key-value storage is commonly used in the
cloud for caching, storing session information, and as a con-
venient way to maintain hot unstructured data sets. Operations
tend to be simple in nature, and require a network round-trip
between the client and the server. This usage model makes
the application generally sensitive to network latency. The
challenge is compounded given the large number of concurrent
clients, each sending very small network packets to a number
of servers. As a result, the server spends a sizable amount of
time in the networking stack.

There are several such servers, for our evaluations, we
selected Redis [43] due to its high performance, rich API
and widespread use among PaaS providers (e.g., Amazon
Elasticache, Google Compute Engine). We obtained Re-
dis 2.8.13 from the main GitHub repository, and built it in
our Ubuntu 13.10 platform. The resulting binaries are then
used in each of the deployment modes: native, Docker and
KVM. To improve performance, and given that Redis is a
single-threaded application, we affinitize the container or VM
to a core close to the network interface. The test consists of
a number of clients issuing requests to the server. A mix of
50% read and 50% writes was used. Each client maintains a
persistent TCP connection to the server and can pipeline up
to 10 concurrent requests over that connection. Thus the total
number of requests in flight is 10 times the number of clients.
Keys were 10 characters long, and values were generated
to average 50 bytes. This dataset shape is representative of
production Redis users as described by Steinberg et. al. [47].
For each run, the dataset is cleared and then a deterministic
sequence of operations is issued, resulting in the gradual
creation of 150 million keys. Memory consumption of the
Redis server peaks at 11 GB during execution.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120

Th
ou

gh
pu

t (
K

 O
P/

s)

Number of client threads

Native
Docker NAT

Docker net=host
KVM

Fig. 8. Evaluation of NoSQL Redis performance (requests/s) on multiple
deployment scenarios. Each data point is the arithmetic mean obtained from
10 runs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100 120

La
te

nc
y

(m
s)

Number of client threads

Native
Docker NAT

Docker net=host
KVM

Fig. 9. Average latency (in ms) of operations on different Redis deployments.
Each data point is the arithmetic mean obtained from 10 runs.

Figure 8 shows the throughput (in requests per second) with
respect to the number of client connections for the different
deployment models. Figure 9 shows the corresponding average
latencies (in µs) for each of the experiments. In the native
deployment, the networking subsystem is quite sufficient to
handle the load. So, as we scale the number of client con-
nections, the main factor that limits the throughput of a Redis
server is saturation of the CPU – note that Redis is a single-
threaded, event-based application. In our platform, that occurs
quickly at around 110 k request per second. Adding more
clients results in requests being queued and an increase in the
average latency.

A Redis server puts a lot of pressure in the networking
and memory subsystems. When using Docker with the host
networking stack, we can see that both throughput and latency
are virtually the same as the native case. The story is quite
different when using Docker with NAT enabled as shown in
Figure 1. In this case the latency introduced grows with the
number of packets received over the network. Whereas it is
comparable to native with 4 concurrent connections (51µs or
1.05x that of native), it quickly grows once the number of
connections increases (to over 1.11x with 100 connections).
Additionally, NAT consumes CPU cycles, thus preventing the
Redis deployment from reaching the peak performance seen
by deployments with native networking stacks.

Similarly, when running in KVM, Redis appears to be
network-bound. KVM adds approximately 83µs of latency to
every transaction. We see that the VM has lower throughput

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300
 0

 12

 24

 36

 48

 60

 72

10
00

 T
ra

ns
ac

tio
ns

/s
ec

%
 lo

ss
 N

at
iv

e
(%

)

Number of sysbench threads

Native
Docker net=host volume

Docker NAT volume
Docker NAT AUFS

KVM qcow
% loss trans/s Native/Docker

% loss trans/s Native/KVM

Fig. 10. MySQL throughput (transactions/s) vs. concurrency.

at low concurrency but asymptotically approaches native per-
formance as concurrency increases. Beyond 100 connections,
the throughput of both deployments are practically identical.
This is can be explained by Little’s Law; because network
latency is higher under KVM, Redis needs more concurrency
to fully utilize the system. This might be a problem depending
on the concurrency level expected from the end user in a cloud
scenario.

I. MySQL

MySQL is a popular relational database that is widely
used in the cloud and typically stresses memory, IPC, filesys-
tem, and networking subsystems. We ran the SysBench [6]
oltp benchmark against a single instance of MySQL 5.5.37.
MySQL was configured to use InnoDB as the backend store
and a 3GB cache was enabled; this cache is sufficient to cache
all reads during the benchmark runs. The oltp benchmark
uses a database preloaded with 2 million records and executes
a fixed set of read/write transactions choosing between five
SELECT queries, two UPDATE queries, a DELETE query
and an INSERT. The measurements provided by SysBench
are statistics of transaction latency and throughput in trans-
actions per seconds. The number of clients was varied until
saturation and ten runs were used to produce each data point.
Five different configurations were measured: MySQL running
normally on Linux (native), MySQL under Docker using host
networking and a volume (Docker net=host volume), using a
volume but normal Docker networking (Docker NAT volume),
storing the database within the container filesystem (Docker
NAT AUFS) and MySQL running under KVM; these different
configurations are summarized in Table III. Although MySQL
accesses the fileystem, our configuration has enough cache that
it performed almost no actual disk I/O, making different KVM
storage options moot.

TABLE III. MYSQL CONFIGURATIONS

Configuration
Network Storage

(Figure 1)
Native Native Native

Docker net=host Volume Native Native
Docker NAT Volume NAT Native
Docker NAT AUFS NAT AUFS

KVM vhost-net virtio + qcow

Figure 10 shows transaction throughput as a function of
the number of users simulated by SysBench. The right Y
axis shows the loss in throughput when compared to native.

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100
 12.5

 12.75

 13

 13.25

 13.5

 13.75

 14
10

00
 T

ra
ns

ac
tio

ns
/s

ec

CPU utilization (%)

Native
Docker net=host volume

Docker NAT volume
Docker NAT AUFS

KVM qcow

Fig. 11. MySQL throughput (transactions/s) vs. CPU utilization.

 0

 12

 24

 36

 48

 60

 0 50 100 150 200 250 300
 0

 64

 128

 192

 256

 320

La
te

nc
y

(m
s)

%
 lo

ss
 N

at
iv

e
(%

)

Number of sysbench threads

Native
Docker net=host volume

Docker NAT volume
Docker NAT AUFS

KVM qcow
% loss Native/Docker

% loss Native/KVM

Fig. 12. MySQL latency (in ms) vs. concurrency.

The general shape of this curve is what we would expect:
throughput increases with load until the machine is saturated,
then levels off with a little loss due to contention when
overloaded. Docker has similar performance to native, with the
difference asymptotically approaching 2% at higher concur-
rency. KVM has much higher overhead, higher than 40% in all
measured cases. AUFS introduces significant overhead which
is not surprising since I/O is going through several layers, as
seen by comparing the Docker NAT volume and Docker NAT
AUFS results. The AUFS overhead demonstrates the difference
between virtualizing above the filesystem, as Docker does,
and virtualizing below the filesystem in the block layer, as
KVM does. We tested different KVM storage protocols and
found that they make no difference in performance for an
in-cache workload like this test. NAT also introduces a little
overhead but this workload is not network-intensive. KVM
shows a interesting result where saturation was achieved in

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 2000 4000 6000 8000 10000 12000 14000

La
te

nc
y

(m
s)

Throughput in Transactions/s

Native
Docker net=host volume

Docker NAT volume
Docker NAT AUFS

KVM qcow

Fig. 13. MySQL throughput (transactions/s) vs. latency.

the network but not in the CPUs (Figure 11). The benchmark
generates a lot of small packets, so even though the network
bandwidth is small, the network stack is not able to sustain the
number of packets per second needed. Since the benchmark
uses synchronous requests, a increase in latency also reduces
throughput at a given concurrency level.

Figure 12 shows latency as a function of the number
of users simulated by SysBench. As expected the latency
increases with load, but interestingly Docker increases the
latency faster for moderate levels of load which explains the
lower throughput at low concurrency levels. The expanded
portion of the graph shows that native Linux is able to achieve
higher peak CPU utilization and Docker is not able to achieve
that same level, a difference of around 1.5%. This result shows
that Docker has a small but measurable impact.

Figure 11 plots throughput against CPU utilization. Com-
paring Figures 10 through Figure 12, we note that the lower
throughput for the same concurrency for Docker and Docker
with NAT does not create an equivalent increase in CPU
consumption. The difference in throughput is minimal when
the same amount of CPU is used. The latency otherwise
is not the same with Docker being substantially higher for
lower values of concurrency, we credit this behavior to mutex
contention. Mutex contention also prevents MySQL from fully
utilizing the CPU in all cases, but it is more pronounced in
the Docker case since the transactions take longer. Figure 11
shows clearly that in the case of VM the limitation is not
CPU but network but the overhead of KVM is apparent even
at lower numbers of clients.

The throughput-latency curves in Figure 13 make it easy to
compare the alternatives given a target latency or throughput.
One interesting aspect of this curve is the throughput reduction
caused by higher context switching in several cases when more
clients are introduced after saturation. Since there is more idle
time in the Docker case a higher overhead does not impact
throughput for the number of clients used in the benchmark.

J. Discussion

We see several general trends in these results. As we expect
given their implmentations, containers and VMs impose almost
no overhead on CPU and memory usage; they only impact
I/O and OS interaction. This overhead comes in the form of
extra cycles for each I/O operation, so small I/Os suffer much
more than large ones. This overhead increases I/O latency and
reduces the CPU cycles available for useful work, limiting
throughput. Unfortunately, real applications often cannot batch
work into large I/Os.

Docker adds several features such as layered images and
NAT that make it easier to use than LXC-style raw containers,
but these features come at a performance cost. Thus Docker
using default settings may be no faster than KVM. Applica-
tions that are filesystem or disk intensive should bypass AUFS
by using volumes. NAT overhead can be easily eliminated
by using –net=host, but this gives up the benefits of network
namespaces. Ultimately we believe that the model of one IP
address per container as proposed by the Kubernetes project
can provide flexibility and performance.

While KVM can provide very good performance, its con-
figurability is a weakness. Good CPU performance requires
careful configuration of large pages, CPU model, vCPU pin-
ning, and cache topology; these features are poorly docu-
mented and required trial and error to configure. We advise

readers to avoid using qemu-kvm directly and instead use
libvirt since it simplifies KVM configuration. Even on the
latest version of Ubuntu we were unable to get vhost-scsi to
work, so there is still room for improvement. This complexity
represents a barrier to entry for any aspiring cloud operator,
whether public or private.

IV. RELATED WORK

The Multics [32] project set out to build utility comput-
ing infrastructure in the 1960s. Although Multics never saw
widespread use and cloud computing couldn’t take off until the
Internet became widespread, the project produced ideas like the
end-to-end argument [41] and a set of security principles [42]
that are still relevant today.

Virtual machines were introduced on IBM mainframes in
the 1970s [20] and then reinvented on x86 by VMware [38]
in the late 1990s. Xen [15] and KVM [25] brought VMs to
the open source world in the 2000s. The overhead of virtual
machines was initially high but has been steadily reduced over
the years due to hardware and software optimizations [25, 31].

Operating system level virtualization also has a long his-
tory. In some sense the purpose of an operating system is to
virtualize hardware resources so they may be shared, but Unix
traditionally provides poor isolation due to global namespaces
for the filesystem, processes, and the network. Capability-
based OSes [22] provided container-like isolation by virtue of
not having any global namespaces to begin with, but they died
out commercially in the 1980s. Plan 9 introduced per-process
filesystem namespaces [34] and bind mounts that inspired the
namespace mechanism that underpins Linux containers.

The Unix chroot() feature has long been used to implement
rudimentary “jails” and the BSD jails feature extends the con-
cept. Solaris 10 introduced and heavily promoted Zones [37], a
modern implementation of containers, in 2004. Cloud provider
Joyent has offered IaaS based on Zones since 2008, although
with no effect on the overall cloud market.

Linux containers have a long and winding history. The
Linux-VServer [46] project was an initial implementation of
“virtual private servers” in 2001 that was never merged into
mainstream Linux but was used successfully in PlanetLab.
The commercial product Virtuozzo and its open-source version
OpenVZ [4] have been used extensively for Web hosting
but were also not merged into Linux. Linux finally added
native containerization starting in 2007 in the form of kernel
namespaces and the LXC userspace tool to manage them.

Platform as a service providers like Heroku introduced the
idea of using containers to efficiently and repeatably deploy
applications [28]. Rather than viewing a container as a virtual
server, Heroku treats it more like a process with extra isolation.
The resulting application containers have very little overhead,
giving similar isolation as VMs but with resource sharing like
normal processes. Google also pervasively adopted applica-
tion containers in their internal infrastructure [19]. Heroku
competitor DotCloud (now known as Docker Inc.) introduced
Docker [45] as a standard image format and management
system for these application containers.

There has been extensive performance evaluation of hy-
pervisors, but mostly compared to other hypervisors or non-
virtualized execution. [23, 24, 31]

Past comparison of VMs vs. containers [30, 33, 44, 46, 50]
mostly used older software like Xen and out-of-tree container
patches.

V. CONCLUSIONS AND FUTURE WORK

Both VMs and containers are mature technology that have
benefited from a decade of incremental hardware and software
optimizations. In general, Docker equals or exceeds KVM
performance in every case we tested. Our results show that
both KVM and Docker introduce negligible overhead for CPU
and memory performance (except in extreme cases). For I/O-
intensive workloads, both forms of virtualization should be
used carefully.

We find that KVM performance has improved consider-
ably since its creation. Workloads that used to be considered
very challenging, like line-rate 10 Gbps networking, are now
possible using only a single core using 2013-era hardware and
software. Even using the fastest available forms of paravirtual-
ization, KVM still adds some overhead to every I/O operation;
this overhead ranges from significant when performing small
I/Os to negligible when it is amortized over large I/Os. Thus,
KVM is less suitable for workloads that are latency-sensitive
or have high I/O rates. These overheads significantly impact
the server applications we tested.

Although containers themselves have almost no overhead,
Docker is not without performance gotchas. Docker volumes
have noticeably better performance than files stored in AUFS.
Docker’s NAT also introduces overhead for workloads with
high packet rates. These features represent a tradeoff between
ease of management and performance and should be consid-
ered on a case-by-case basis.

In some sense the comparison can only get worse for con-
tainers because they started with near-zero overhead and VMs
have gotten faster over time. If containers are to be widely
adopted they must provide advantages other than steady-state
performance. We believe the combination of convenience,
faster deployment, elasticity, and performance is likely to
become compelling in the near future.

Our results can give some guidance about how cloud
infrastructure should be built. Conventional wisdom (to the
extent such a thing exists in the young cloud ecosystem) says
that IaaS is implemented using VMs and PaaS is implemented
using containers. We see no technical reason why this must be
the case, especially in cases where container-based IaaS can
offer better performance or easier deployment. Containers can
also eliminate the distinction between IaaS and “bare metal”
non-virtualized servers [10, 26] since they offer the control and
isolation of VMs with the performance of bare metal. Rather
than maintaining different images for virtualized and non-
virtualized servers, the same Docker image could be efficiently
deployed on anything from a fraction of a core to an entire
machine.

We also question the practice of deploying containers inside
VMs, since this imposes the performance overheads of VMs
while giving no benefit compared to deploying containers
directly on non-virtualized Linux. If one must use a VM,
running it inside a container can create an extra layer of
security since an attacker who can exploit QEMU would still
be inside the container.

Although today’s typical servers are NUMA, we believe
that attempting to exploit NUMA in the cloud may be more

effort than it is worth. Limiting each workload to a single
socket greatly simplifies performance analysis and tuning.
Given that cloud applications are generally designed to scale
out and the number of cores per socket increases over time,
the unit of scaling should probably be the socket rather than
the server. This is also a case against bare metal, since a
server running one container per socket may actually be faster
than spreading the workload across sockets due to the reduced
cross-traffic.

In this paper we created single VMs or containers that
consumed a whole server; in the cloud it is more common
to divide servers into smaller units. This leads to several
additional topics worthy of investigation: performance isolation
when multiple workloads run on the same server, live resizing
of containers and VMs, tradeoffs between scale-up and scale-
out, and tradeoffs between live migration and restarting.

SOURCE CODE

The scripts to run the experiments from this paper are avail-
able at https://github.com/thewmf/kvm-docker-comparison.

ACKNOWLEDGEMENTS

This work was supported in part by the Office of Science,
United States Department of Energy under award number DE-
SC0007103.

We thank our manager Karthick Rajamani for his com-
ments on drafts of this paper.

LAWYERS MADE US INCLUDE THIS

IBM, the IBM logo, and ibm.com are trademarks or reg-
istered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product
and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available
on the Web at ”Copyright and trademark information” at
http://www.ibm.com/legal/copytrade.shtml.

REFERENCES

[1] Checkpoint/Restore In Userspace. http://criu.org/.
[2] Cloud Foundry Warden documentation. http://docs.cloudfoundry.org/

concepts/architecture/warden.html.
[3] Intel Math Kernel Library—LINPACK Download. https://software.intel.

com/en-us/articles/intel-math-kernel-library-linpack-download.
[4] OpenVZ. http://openvz.org/.
[5] Secure Computing Mode support: “seccomp”. http:

//git.kernel.org/cgit/linux/kernel/git/tglx/history.git/commit/?id=
d949d0ec9c601f2b148bed3cdb5f87c052968554.

[6] Sysbench benchmark. https://launchpad.net/sysbench.
[7] The “nuttcp” Network Performance Measurement Tool. http://www.

nuttcp.net/.
[8] Virtualization Overview. http://www.vmware.com/pdf/virtualization.pdf.
[9] Xen Project Software Overview. http://wiki.xen.org/wiki/Xen Overview.

[10] SoftLayer introduces bare metal cloud. http://www.softlayer.com/press/
release/96/softlayer-introduces-bare-metal-cloud, Oct 2009.

[11] PXZ—parallel LZMA compressor using liblzma. https://jnovy.
fedorapeople.org/pxz/, 2012.

[12] Advanced multi layered unification filesystem. http://aufs.sourceforge.
net, 2014.

[13] Jens Axboe. Flexible IO Tester. http://git.kernel.dk/?p=fio.git;a=
summary.

[14] Ari Balogh. Google Compute Engine is now generally
available with expanded OS support, transparent maintenance,
and lower prices. http://googledevelopers.blogspot.com/2013/12/
google-compute-engine-is-now-generally.html, Dec 2013.

[15] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the

art of virtualization. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, SOSP ’03, pages 164–177, New York,
NY, USA, 2003.

[16] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In
Proceedings of the Annual Conference on USENIX Annual Techni-
cal Conference, ATEC ’05, pages 41–41, Berkeley, CA, USA, 2005.
USENIX Association.

[17] E. W. Biederman. Multiple instances of the global Linux namespaces.
In Proceedings of the 2006 Ottawa Linux Symposium, 2006.

[18] Matthias Bolte, Michael Sievers, Georg Birkenheuer, Oliver Niehörster,
and André Brinkmann. Non-intrusive virtualization management using
libvirt. In Proceedings of the Conference on Design, Automation and Test
in Europe, DATE ’10, pages 574–579. European Design and Automation
Association, 2010.

[19] Eric Brewer. Robust containers. http://www.slideshare.net/dotCloud/
eric-brewer-dockercon-keynote, June 2014.

[20] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM
Journal of Research and Development, 25(5):483–490, Sep 1981.

[21] J. Dongarra and P. Luszczek. Introduction to the HPCChallenge
Benchmark Suite. Technical report, ICL Technical Report, 10 2005.
ICL-UT-05-01.

[22] Norman Hardy. KeyKOS architecture. SIGOPS Oper. Syst. Rev., 19(4):8–
25, October 1985.

[23] Nikolaus Huber, Marcel von Quast, Michael Hauck, and Samuel Kounev.
Evaluating and modeling virtualization performance overhead for cloud
environments. In CLOSER, pages 563–573, 2011.

[24] Jinho Hwang, Sai Zeng, F.Y. Wu, and T. Wood. A component-based
performance comparison of four hypervisors. In Integrated Network
Management (IM 2013), 2013 IFIP/IEEE International Symposium on,
pages 269–276, May 2013.

[25] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
KVM: the Linux virtual machine monitor. In Proceedings of the Linux
Symposium, volume 1, pages 225–230, Ottawa, Ontario, Canada, June
2007.

[26] Ev Kontsevoy. OnMetal: The right way to scale. http://www.rackspace.
com/blog/onmetal-the-right-way-to-scale/, June 2014.

[27] Fabio Kung. Memory inside Linux containers. http://fabiokung.com/
2014/03/13/memory-inside-linux-containers/, March 2014.

[28] James Lindenbaum. Deployment that just works. https://blog.heroku.
com/archives/2009/3/3/deployment that just works, Mar 2009.

[29] Matt Mahoney. Large text compression benchmark. http://mattmahoney.
net/dc/textdata.html, 2011.

[30] Jeanna Neefe Matthews, Wenjin Hu, Madhujith Hapuarachchi, Todd
Deshane, Demetrios Dimatos, Gary Hamilton, Michael McCabe, and
James Owens. Quantifying the performance isolation properties of virtu-
alization systems. In Proceedings of the 2007 Workshop on Experimental
Computer Science, ExpCS ’07, 2007.

[31] Richard McDougall and Jennifer Anderson. Virtualization performance:
Perspectives and challenges ahead. SIGOPS Oper. Syst. Rev., 44(4):40–
56, December 2010.

[32] Elliott I. Organick. The Multics system: an examination of its structure.
MIT Press, 1972.

[33] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, Kang G
Shin, et al. Performance evaluation of virtualization technologies for
server consolidation. HP Labs Technical Report, 2007.

[34] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil
Winterbottom. The Use of Name Spaces in Plan 9. In Proceedings of
the 5th Workshop on ACM SIGOPS European Workshop: Models and
Paradigms for Distributed Systems Structuring, pages 1–5, 1992.

[35] Lennart Poettering, Kay Sievers, and Thorsten Leemhuis. Control
centre: The systemd Linux init system. http://www.h-online.com/open/
features/Control-Centre-The-systemd-Linux-init-system-1565543.html,
May 2012.

[36] Gerald J. Popek and Robert P. Goldberg. Formal requirements for
virtualizable third generation architectures. Commun. ACM, 17(7):412–
421, July 1974.

[37] Daniel Price and Andrew Tucker. Solaris Zones: Operating system
support for consolidating commercial workloads. In LISA, volume 4,
pages 241–254, 2004.

[38] M. Rosenblum and T. Garfinkel. Virtual machine monitors: current
technology and future trends. Computer, 38(5):39–47, May 2005.

[39] Boden Russell. KVM and Docker LXC Benchmarking
with OpenStack. http://bodenr.blogspot.com/2014/05/
kvm-and-docker-lxc-benchmarking-with.html, May 2014.

[40] Rusty Russell. Virtio: Towards a de-facto standard for virtual I/O devices.
SIGOPS Oper. Syst. Rev., 42(5):95–103, July 2008.

[41] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. ACM Trans. Computer Systems, 2(4):277–288, November
1984.

https://github.com/thewmf/kvm-docker-comparison
http://www.ibm.com/legal/copytrade.shtml
http://criu.org/
http://docs.cloudfoundry.org/concepts/architecture/warden.html
http://docs.cloudfoundry.org/concepts/architecture/warden.html
https://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
https://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
http://openvz.org/
http://git.kernel.org/cgit/linux/kernel/git/tglx/history.git/commit/?id=d949d0ec9c601f2b148bed3cdb5f87c052968554
http://git.kernel.org/cgit/linux/kernel/git/tglx/history.git/commit/?id=d949d0ec9c601f2b148bed3cdb5f87c052968554
http://git.kernel.org/cgit/linux/kernel/git/tglx/history.git/commit/?id=d949d0ec9c601f2b148bed3cdb5f87c052968554
https://launchpad.net/sysbench
http://www.nuttcp.net/
http://www.nuttcp.net/
http://www.vmware.com/pdf/virtualization.pdf
http://wiki.xen.org/wiki/Xen_Overview
http://www.softlayer.com/press/release/96/softlayer-introduces-bare-metal-cloud
http://www.softlayer.com/press/release/96/softlayer-introduces-bare-metal-cloud
https://jnovy.fedorapeople.org/pxz/
https://jnovy.fedorapeople.org/pxz/
http://aufs.sourceforge.net
http://aufs.sourceforge.net
http://git.kernel.dk/?p=fio.git;a=summary
http://git.kernel.dk/?p=fio.git;a=summary
http://googledevelopers.blogspot.com/2013/12/google-compute-engine-is-now-generally.html
http://googledevelopers.blogspot.com/2013/12/google-compute-engine-is-now-generally.html
http://www.slideshare.net/dotCloud/eric-brewer-dockercon-keynote
http://www.slideshare.net/dotCloud/eric-brewer-dockercon-keynote
http://www.rackspace.com/blog/onmetal-the-right-way-to-scale/
http://www.rackspace.com/blog/onmetal-the-right-way-to-scale/
http://fabiokung.com/2014/03/13/memory-inside-linux-containers/
http://fabiokung.com/2014/03/13/memory-inside-linux-containers/
https://blog.heroku.com/archives/2009/3/3/deployment_that_just_works
https://blog.heroku.com/archives/2009/3/3/deployment_that_just_works
http://mattmahoney.net/dc/textdata.html
http://mattmahoney.net/dc/textdata.html
http://www.h-online.com/open/features/Control-Centre-The-systemd-Linux-init-system-1565543.html
http://www.h-online.com/open/features/Control-Centre-The-systemd-Linux-init-system-1565543.html
http://bodenr.blogspot.com/2014/05/kvm-and-docker-lxc-benchmarking-with.html
http://bodenr.blogspot.com/2014/05/kvm-and-docker-lxc-benchmarking-with.html

[42] Jerome H. Saltzer and Michael D. Schroeder. The protection of infor-
mation in computer systems. In Proceedings of the IEEE, volume 63,
Sep 1975.

[43] Salvatore Sanfilippo et al. The Redis Key-Value Data Store. http://redis.
io/.

[44] Ryan Shea and Jiangchuan Liu. Understanding the impact of denial of
service attacks on virtual machines. In Proceedings of the 2012 IEEE
20th International Workshop on Quality of Service, IWQoS ’12, pages
27:1–27:9, 2012.

[45] Solomon Hykes and others. What is Docker? https://www.docker.com/
whatisdocker/.

[46] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and
Larry Peterson. Container-based operating system virtualization: A
scalable, high-performance alternative to hypervisors. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, EuroSys ’07, pages 275–287, 2007.

[47] Yoav Steinberg. I have 500 million keys but
what’s in my Redis DB? http://redislabs.com/blog/
i-have-500-million-keys-but-whats-in-my-redis-db, Jun 2014.

[48] Stphane Graber and others. LXC—Linux containers. https://
linuxcontainers.org/.

[49] Victor Marmol and others. Let me contain that for you: README.
https://github.com/google/lmctfy/blob/master/README.md.

[50] M.G. Xavier, M.V. Neves, F.D. Rossi, T.C. Ferreto, T. Lange, and C.AF.
De Rose. Performance evaluation of container-based virtualization for
high performance computing environments. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromicro International
Conference on, pages 233–240, Feb 2013.

http://redis.io/
http://redis.io/
https://www.docker.com/whatisdocker/
https://www.docker.com/whatisdocker/
http://redislabs.com/blog/i-have-500-million-keys-but-whats-in-my-redis-db
http://redislabs.com/blog/i-have-500-million-keys-but-whats-in-my-redis-db
https://linuxcontainers.org/
https://linuxcontainers.org/
https://github.com/google/lmctfy/blob/master/README.md

	Introduction
	Background
	Motivation and requirements for cloud virtualization
	KVM
	Linux containers

	Evaluation
	CPU—PXZ
	HPC—Linpack
	Memory bandwidth—Stream
	Random Memory Access—RandomAccess
	Network bandwidth—nuttcp
	Network latency—netperf
	Block I/O—fio
	Redis
	MySQL
	Discussion

	Related Work
	Conclusions and Future Work
	Insert from: "rc25482cov.pdf"
	Introduction
	Background
	Motivation and requirements for cloud virtualization
	KVM
	Linux containers

	Evaluation
	CPU—Linpack
	Memory bandwidth—Stream
	Random Memory Access—RandomAccess
	Network bandwidth—nuttcp
	Network latency—netperf
	Block I/O—fio
	Redis
	MySQL

	Related Work
	Conclusions and Future Work

